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A theoretical calculation is made of (an off-diagonal element of) the pressure-strain- 
rate term p;l@[Vu + (Vu)T]) for a simple turbulent shear flow at  high Reynolds 
number. This calculation is described as follows. (1) An expression for the pressure- 
strain-rate term is analytically derived in terms of measurable quantities (velocity 
spectra) - this derivation makes use of a cumulant discard. (2) It is proved that, to 
the lowest order in the spectral anisotropy, the (nonlinear part of) the pressure- 
strain-rate term is linearly proportional to the Reynolds stress. (3) A formula is derived 
for the constant of this proportionality (the Rotta constant) in terms of arbitrary 
velocity spectra. (4) This formula is used to analytically calculate Rotta’s constant, 
C,-, for a class of models of velocity spectra (the variation of Rotta’s constant caused 
by variations in the spectral shapes is examined). (5) It is found that C,, is surprisingly 
insensitive to the large-wavelength part of the spectrum. This insensitivity suggests 
that C,, should not vary much from one turbulence application to another provided 
that the Reynolds number is very large. However, it is also shown that C,, is un- 
expectedly sensitive to the short-wavelength part of the spectrum, and varies with 
Reynolds number when the latter is less than about 30. 

The calculation is based on a straightforward solution of the Navier-Stokes 
equation to obtain formal expressions for u and p .  These expressions are then used 
to write the pressure-strain-rate in terms of a two-time fourth-order velocity correla- 
tion. The latter correlation is evaluated by a standard cumulant discard. Simplifying 
assumptions of the calculation are that average quantities vary little in space and 
time, and that the mean flow are nnidirectional. These simplifications are made in 
order to  emphasize the method of calculation and its details. 

~ ~ ~~ ~~ ~ 

1. Introduction 
An important term in the transport equation of Reynolds stress is the pressure- 

velocity correlation (the pressure-strain-rate term). Rotta (1951) proposed a plausible 
model for this term which has since been widely used in phenomenological turbulence 
closures (e.g. Reynolds 1976; Hanjalic & Launder 1972; Lumley & Khajeh-Nouri 
1974; Launder, Reece & Rodi 1975; and many others). These closures have met with 
relative success (Reynolds 1976). However, due to uncertainties in various model 
terms of the closures as well as in experiments, it is difficult to predict just how 
accurate the Rotta model will be for a given turbulence application. 

The purpose of this paper is to present an analytical calculation of the pressure- 
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strain-rate term directlyfrom the Kavier-Stokes equation. There are four interrelated 
goals of the calculations: (1) to derive analytically an expression for the pressure- 
strain term in terms of measurable quantities (covariant velocity spectra); (2) to 
prove that (to lowest order in the spectral anisotropy) the pressure-strain is linearly 
proportional to the Reynolds stress; (3) to derive a formula for the constant of this 
proportionality (the Rotta constant) in terms of arbitrary velocity spectra; and (4) to  
use this formula to  calculate (estimate) analytically Rotta’s constant from straight- 
forward assumptions about the general behaviour of velocity spectra in nearly 
homogeneous shear flows. With this calculation, we are able to examine the changes 
of Rotta’s constant caused by changes in the spectrum. 

For the sake of simplicity, we will only consider an off-diagonal element of the 
pressure strain-rate tensor. The other elements can be readily calculated by the same 
method. We also, for simplicity, restrict ourselves to a uni-directional mean flow that 
varies only slowly in time on a Lagrangian integral time scale, and whose gradient 
varies only slowly in space. 

1 .  I .  Plan of the calculution 
The plan of our calculation is to derive nonlinear expressions for the velocity fluctua- 
tions u and pressure fluctuations p by a straightforward formal solution of the 
Navier-Stokes equation. The expression for p is not new and has been widely used 
(e.g. Chou 1945). The expression for u is new in the present context. The derived 
expressions for u and p allow us to  relate the pressure-strain-rate tensor 
pil((pVu) + ( ~ ( V U ) ~ ’ ) )  (po is the density and the superscript T denotes the transpose) 
to a two-point fourth-order velocity correlation. This correlation is then analytically 
evaluated in terms of single-point velocity covarianccs (i.e. the Reynolds stress). This 
evaluation is based on easily applied approximation methods that have been widely 
used in turbulence theory. The theme of our work, which is similar to the themes 
of Leslie (1973) and Herring (1974)) is to apply turbulence theories to derive or 
improve phenomenological closure equations. However, our derivation is much 
less ambitious than the direct-interaction approxiniation (e.g. Leslie 1970; Herring 
1974; Schumann & Herring 1976), and a knowledge of sophisticated turbulence 
theory is not needed. Because of its less ambitious nature, our calculation is simple 
enough to be entirely analytic. For example, our goal is not to calculate the energy 
spectra but, rather, to derive the pressure-strain-rate in terms of the spectra. I n  this 
derivation there occurs a constant C,, (Rotta’s constant) which is explicitly expressed 
in terms of the energy spectra. This derivation permits an analytical determination 
of that constant. 

The organization of the paper is as follows: I n  $3, an off-diagonal element of the 
pressure-strain-rate correlation, A$, is written in terms of the fluctuating velocity u. 
A nonlinear expression for u is derived from Navier-Stokes equation in $ 3 .  This u 
expression allows us to write A2’ as a two-time fourth-order velocity correlation. I n  
$4, A$ is derived in terms of velocity spectra to  general order in anisotropy. I n  $5,  
A2 is explicitly related to the Reynolds stress to first order in the spectral anisotropy. 
This linear relationship resembles that of Rotta (1951). The proportionality constant 
(Rotta’s constant) is calculated in $ 6 .  The errors in that calculation are examined in 
$ 7 .  Also examined is the variation of C,, with variations of spectra. A summary is 
given in  $ 8 .  
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1.2. Assumptions 

To help clarify the theory, expose the underlying approximations, and, to  allow more 
details to be included, we make the following simplifying assumptions: (a) the mean 
flow U has the idealized unidirectional form 

u = [UO(Z), 0901, ( 1 )  

with Cartesian co-ordinate [x, y, 21; (b) aU/az and all ensemble-average quantities 
(correlation functions) are assumed to vary only a little in space and time on scales 
Lo and rL, respectively, where Lo is the characteristic length scale of the energy- 
containing part of the spectrum and rL is the Lagrangian integral time scale; (c) we 
only calculate one off-diagonal element of the pressure-strain-rate tensor; and (d ) the 
det,ails of the calculation are worked out for high Reynolds number. The calculation 
can be readily generalized to more complex mean flow geometries, and t o  include all 
the elements of the pressure-strain tensor, but this is not done here. For low Reynolds 
numbers the expression for the pressure-strain-rate is only given in terms of the 
spectra. 

2. Pressure-strain (pVu) 

stress transport equation is 
The pressure-velocity correlation (pressure-strain-rate term) that appears in the 

POYP[VU + (VU)T1), 

where u = u(r,  t) is the fluctuating part of the fluid velocity a t  position r a t  time t, 
p = p(r, t )  is the fluctuating part of the pressure a t  r and t, and the angle brackets 
denote the ensemble average (mean value). For the sake of simplicity, we will only 
calculate an off-diagonal element 

PoYP(auZ/ax + au,/az)). 

We shall first calculate ( p  auZ/ax). Afterwards, it will be very simple to  calculate the 
transposed correIation <p au,/az) as well. 

To evaluate <p au,/ax) we need expressions for p and u, and both quantities can be 
obtained from the Navier--Stokes equation. The fluctuating part of that equation is 
given by 

au/at + (u + U) . vu = (u . VU) - vp/po + u . vu + VV", (2) 

where v is the molecular viscosity, po is the fluid density, assumed to be constant, and 
U is the mean flow. Equation (2) is obtained from the Navier-Stokes equation by 
subtracting out the average of the latter. 

A formal expression for p is obtained by taking the divergence of (2) and using 
incompressibility V . u = 0: 

(; -- V2P(t) --V.(U.VU)'-2 -z- , 
PO 

(3) 

where we have defined 

(U.VU)'  Ez u.vu-(u.Vu) (4) 
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to be the fluctuating part of u . Vu, and we have used the idealized flow U = [Uo(z), 0, 01 
so that 

au, au, V.(U.Vu+u.VU) = 2 - - .  
ax az 

Equation (3) can be solved for p by Fourier transforms. The transforms of p and u 
are defined by 

p k ( t )  = drp(t) exp ( -ik.  r), uk(t) = dr u(r, t )  exp ( - ik.  r).  (6) s s 
We then obtain pk from the Fourier transform of (3) : 

where .i&(t), the Fourier transform of the nonlinear fluctuation term V . (u . Vu)', is 
explicitly given by 

and we have used the inverse Fourier transform 

u(r, t )  = ( 2 7 ~ ) - ~  dklUkl ( t )  exp (ik,. r) s 
in (8). To obtain (7), we have also neglected the spatial variakion of aUo/az as con- 
sistent with our limitation of slow variation of mean quantities on the scale of Lo, 
the integral wavelength of the spectrum. 

It is very convenient to continue the analysis with Fourier transforms. Let us then 
Fourier expand the pressure-velocity term : 

where V is the volume of the system, U,k(t) is the x component of uk(t), 

u,k(t) = d r  u,(t) exp ( - ik . r),  s 
and the asterisk denotes the complex conjugate. The value of V will not be needed 
in our final expressions given in terms of the spatial variable r. We have also used, 
in (9), the homogeneity condition 

where 6 is the Dirac delta function and V is the volume of the system. The validity of 
this condition is consistent with our limitation of slow spatial variations of average 
quantities. 
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Substitution of ( 7 )  and (8) in (9) yields 

Pi'<P(t) % ( t ) l W  = a 4- 4% (11) 

where A: is seen to be the contribution to  the pressure-strain rate from the non- 
linear fluctuation part of p ,  and A E  is the contribution from the mean-flow part of p .  

It is the term A 2  for which Rotta (1951) proposed a model that has been widely 
used. Evaluating this term presents the familiar closure problem of calculating third- 
order velocity correlations, {UZkNk), in terms of covariances (Reynolds stresses). We 
will obtain closure for (u&Nk), by first expressing u in terms of second-order (non- 
linear) velocity fluctuations so that (u:~ &) can be expressed as a fourth-order velocity 
correlation. Closure approximations can be applied directly to that fourth-order 
correlation. The main task is to derive a nonlinear expression for U. This is done next. 

3. Expression for u,(t) 

of (2).  It is convenient to first write ( 2 )  in the form 
An expression for u, can be readily obtained by a formal solution (an integration) 

(i + U .  V) u ( t )  = Iv(r, t ) ,  (12) 

V P ( t )  Iv(r, t )  = - [ u ( t )  . V u ( t ) ] '  - u , VU - - + vV%(t).  
Po 

A formal solution of (12) can be immediately written as 

where Go(r, t ;  r,, t l )  is a Green's function defined by 

i (i + U . V) Go(r, t ;  rl, t,) = 0, 

Gob-, t,; r1,tJ = - r1). 

Equation (13) can be verified by differentiating both sides of (13) with respect to  t 
and substituting (14) and (13). The quantity Go can also be viewed as the integrating 
factor of (12). That is, (12) can be viewed as a linear inhomogeneous equation with 
the homogeneous part given by its left side, and with Go is the solution of that part. 
Note tha8t Go(t) is explicitly given by 

Go = exp[ - ( t  - t l )  U.V]d(r -rl) 

= 8[r - ( t  - tl) U - r,] 
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for our case in which U varies slowly, or not a t  all, with t .  More generally, when 
U = U(t) varies with time, 

G, = exp [ -1 c ~ t , ~ ( t , ) . ~  8(r-rl). 

A simplification we anticipate is that Go will be found to drop out of the term 

1 1 

0 

(P a % / W  
The z component of (13) gives u,(t) E u,(r, t ) ,  which we need for A g ,  as: 

where the subscript tl,rl on the square bracket is a reminder that the functions 
inside are evaluated at  t, and rl [e.g. p = p(rl, t l )  and u = u(rl, tl) in (IS)], z1 denotes 
the z component of rl = (xl, y,, z,), Q, denotes a/&,, and we have used 

For present simplification we consider large Reynolds number so that vVtzi, can be 
neglected in (16). This neglect is justified because the scales that are small enough 
to be influenced by the viscous term do not contribute significantly to the pressure- 
strain-rate covariance (i.e. such scales do not contribute significantly to the integral 
in (33) or (37)). Smaller Reynolds number will be considered in appendixD. Equation 
(16) thus becomes 

(u . Vu,)' = u .Vu,-(u .Vu,). 

%(t) = [dr1G0(r, t ;  r1, O)u,(r,, 0 )  
J -I0' dt,~dr,G,,(r,t;r,,t,) (u.Vu,)'+p-l- 

The Fourier transform of ( 1  7) ,  needed for ( 1  l ) ,  is 

where 

(u. v.,,; = Sdklk * (Ukluzkg - (ukluzkz)) 

is the Fourier transform of (u . Vu,)', k, = k - k,, and 

Go,(t - t l )  = d(r - r,) Go(r, t ;  rl, tl) exp [ - ik . (r - rl)] / 
z exp(-itk.U).  

is the Fourier transform of Go, For the last step, we used (15). 
To eliminate pk  from (18) we substitute ( 7 )  and obtain u,k in the desired form 

U,k(t) = GOk(t) U,,(o) - dtlGOk(t - t l )  (U .vU,); + ikzNk - 2 (z+.q - . (21) 1: [ tl 

Equation (21) determines u,k in terms of the nonlinear velocity fluctuation 
(u. VU,)k+ ik,Nk. We can use this equation to calculate AZ,(t). 
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4. Calculation of A 2  (nonlinear part of the pressure-strain) 

A; in terms of fourth-order velocity correlations. 
With uzk given by (21), we can express the triple velocity correlation (u,"kNk) and 

The fourth-order correlation is obtained by substituting (21) in (u&(t) &(t)): 

(u?k(t) Nk(t)) = G$k(t) (u?k(o) Nk(t)) -Io' dtlG$k(t - tl) (<[u(tl) *Vuz(tl)l$ Nk(t)) 

+ ik<xz(tl) Nk(t)) - (ug(tl) Nk(t)) 2} - (22) 

This equation can be substantially simplified a t  large t (i.e. t larger than the integral 
time scales) by the following considerations : First, the initial-value term (us( 0) Nk(t))  
decays towards zero as t increases, 

(%$(O) Nk(t))/(u&(t) Nk(t)) 0 (t -f m), (23) 

even if the energy increases with t (as in Harris, Graham & Corrsin 1977). It can be 
shown that the time scale (e-folding time) of this decay is on the order of (kv0)--lJ 
where .$vi = &<u .u) is the mean-square kinetic energy density of the turbulence. 
This scale is of the same order as the (Eulerian) decay time of the more familiar 
velocity covariance (u&(O) u&(t)) (e.g. Kraichnan 1959). Secondly, it can be shown, 
as a corollary to (23), that a t  large t (compared to integral time scales) 

where 7k is also an (Eulerian) integral time scale on the order of (kv0)-l. Substituting 
(23) and (24) into (22), there results (for t larger than integral time scales) 

which expresses {?&kNk) in terms of the fourth-order velocity correlation denoted by 
Fk. The large t limit is consistent with our basic limitation of small variations on the 
integral time scale. 

The nonlinear part of the pressure-strain, denoted by A$z in (1 1) is expressed in 
terms of fourth-order correlations by substituting (25) into ( 1  1 ) :  

To complete the closure problem for A:&t) we must express Fk in terms of stress 
spectra (velocity covariances) and then perform the t, and k integrations. An expres- 
sion for Fk in terms of the stress spectra is derived in appendix A. This derivation 
is based on the neglect of the cumulant of the two-time fourth-order correlation, 
(uZ(tl) u;T,(tl) [uk,(t) Uk,(t)]'), which occurs in Fk. Such a cumulant neglect is also 
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basic to the direct interaction approximation (e.g. Kraichnan 1959; Leslie 1973; 
Herring 1966; Edwards 1964; Weinstock 1977), and is much weaker than neglect of 
single-time fourth-order cumulants in quasi-normal theory (Orzag 1970; Proudman 
& Reid 1954). The closure expression thereby obtained for AZz in appendix A is 

where 

S(k) = (u(k, t )  u*(k, t ) )  V-l, 

is the velocity covariance spectrum at  wave vector k and time t ,  k, = k - k,, and 
b(k) and 7, (an Eulerian correlation time, or damping time) are definecl by 

b(k) = k, k& - k,k, k2/k2, 

T~ = ($n)&[(kf+ki):  (uu)]-~.  

Equation (27) determines the pressure-strain rate ACz in terms of measurable qunn- 
tities (velocity spectra S). This equation is a principal result of our paper. If the 
spectra S were known, by theory or experiment, then i t  would be straightforward to 
evaluate the k and k, integrals. At present, some aspects of S are known fairly well 
and some are not. Hence, presently, (27) can only be evaluated for models of parts of 
S, or by making assumptions about S. Afterwards, one can readily determine the 
sensitivity of AZ to these models. 

Note that no approximations have been made about the anisotropy so that (27) is 
correct to all orders (if expanded in powers of the anisotropy). Note, too, that A:, 
vanishes for isotropic turbulence (i.e. for isotropic S, (uu), and vanishing aU,/az) 
because, then, the integrand is an odd function of k,. The main limitation of (27)  is 
to slow variations of mean quantities in space and time. The main approximation 
is the cumulant discard discussed in appendix A. 

I n  order to derive a Rotta-like expression from (27), we must linearize it in terms 
of the anisotropy. This is done next. 

5.  At‘ to first order in anisotropy (the Rotta term) 
The purpose of this section is to explicitly express in terms of the Reynolds 

stress. This expression is only derived to first order in the anisotropy, and a com- 
parison is made with Rotta’s model. Afterwards, the theoretical value of Rotta’s 
constant is calculated (approximately) - in 9 6. 

To expand AgZ in powers of anisotropy, we divide S(k), in (27), into an isotropic 
part S(k)l and an anisotropic deviation S(k)A as follows: 

S(k) = S(k)r+S(k)A, 

where I is the identity matrix, and E ( k )  is a scalar energy spectrum. It satisfies 

lorn d k E ( k )  = +{u .u) = ;v;. 
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Similarly, the stress tensor can be divided into an isotropic part ,uEl and an anisotropic 
part (uu)" 

(uu) = v; I + (UU)A. (29 )  

Equation (27 )  can now be linearized by substituting (28 )  and (29), and neglecting all 
second- and higher-order terms in the anisotropies S A  and (uu)". This neglect yields 

b(k): [S(kl) S1(k,) + Sz(kl) S(k,)]: k2 
(k;, + k$ k2v, 

7 (30)  
-- 1 b(k): Sz(kl) Sz(k2): k2[(k? + ki): (uu)"]) 

2 (k2, + k$ v$ k2 

which gives A; to first order in the anisotropy. 

useful simplification comes from incompressibility: 
It is not difficult to express the right side of (30 )  in terms of the Reynolds stress. A 

k,.S(k2) = 0 ,  k.S(k,) = (k,+k,):S(k,) = kl:S(k,). 

The first term in the integrand of (30 )  can thus be expressed, with (28)) as 

k X  Ic, W): S(kl) Sz(k2): k 2 k 2  = k, (k,. S(k,) .2) - (=) (k,. S(k,) . k,)] 

x [k : - - - ] - - ,  (k, . k,), 27r2E(k,) 

ki k,ki 

and the second term is expressed, after interchanging the dummy variables of integra- 
tion (k,+ k,, k2-+ k,), as 

The third term of (30 )  can be evaluated in a straightforward (although lengthy) 
integration, a.nd we have found it very small in comparison with ( 3 1 ) ;  it is henceforth 
neglected. 

We wish to  separate S,,(kl) = B . S . 2  from all the other spectral elements 
[X,,(k,), Sy,(kl), Sz2(kl), Sz3(kl), Sy2(kl)] in (31) and (32 ) .  The reason behind this 
separation, as will soon be made clear, is that the Rotta hypothesis predicts that 
A$z should depend on S,, in the form /dklSx,(kl) and not on the other spectral ele- 
ments (e.g. Szx) .  I n  fact, if the Rotta hypothesis were exact, then all the spectral 
elements other than S, would cancel out of (30 ) .  To effect this cancellation, it is 
necessary to express S,, and S,, in terms of S,  by means of the incompressibility 
conditions 

kl.S(k1) ** = klzS,,(kl) + k,,fJx,(kl) + kl,fJX,(k,) = 0,  

k1. S(kl) . 2  kl,S,,(kl) + kl,SY8(kl) + k1,SzZ(kl) = 0 .  
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These expressions are substituted for S,, and S,, in (31)  and (32) ,  and, for later 
convenience (see Q7e), we also insert the expression 

k , . S ( k , ) . t  [l-&(kl.k,)2] = 0 1 k k  A = [ (v) k,. S(k,) . .ft + 

in (31)  and (32) .  After these substitutions are made in (31)  and (32)  we obtain the 
temporarily lengthy expressions 

b(k):S(k1)S'(kz):k2 = ( k ,  [ k , , S , , - ~  (k,,S,+ kl,S,,) + k2,S,,] 
k2 kl, 

and 

b ( k ) : S ' ( k , )  S ( k , ) : k 2  
* k l ) )  - k,kz (k2, - (k, , k,)2)] k2 k2 

k2,,SXx + k i y S y y  + k$S,, - - 2kzxkzu (E,,X,,+ kl,Sx,) 
kl ,  

where f, = k, /k ,  denotes the unit vector along k,, and to condense notation we use 
Sij to denote S,,(kl) so that, for example, S,, = Xx,(kl). 

T o  express A:, in terms of X,,, we next substitute (31 ' )  and (32')  back into (30)  and 
divide the result in two parts: one part containing only the spectrum S,, and a 
remainder part, denoted by R', containing all the other spectra X,,, S,, S,,, S,,, and 
Sg,. Thus, we write (30)  

where 

where R' denotes all the terms coming from (31 ' )  and (32') that contain spectra other 
than S,,. The prime on R' is a reminder that it (R') does not contain S,. Note that the 
k integration has been transformed into a k,  integration by k = kl+k,. We also 
wish to reassure the reader that, although y is quite complex looking, the integrations 
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in (33) can be easily performed, as is done later on. Furthermore, the first term (con- 
taining k,k,,) is dominant; the other terms of y are small and provide a small 
correction. 

Equation (33) can be easily written in terms of the stress. To do so we simply 
multiply the numerator and denominator of the S,, part of (33) by (u,u,), and use 
the definitions (2n)-s/dkS,,(k) = (u,u,) and (4n)-l[dk2E(k2) k i 2  = #vE to  obtain 

A:' = - k*v,(u,u,) + R', (34) 

where k* is a wavenumber explicitly defined by 

so that k* is the mean value of y averaged over the velocity spectra X,,(k,) and 
E(k, )  ki2.  The quantity (k*)-l is a novel kind of integral scale because it is a double 
integral over two spectra. This integral scale is basic to, and characteristic of, the 
pressure-strain-rate tensor; a knowledge of k* is equivalent to a knowledge of AN,. 
It is shown in the next section that k* is readily calculated. 

The first term on the right-hand side of (34) agrees with Rotta's model; we refer to 
it as the 'Rotta term'. This is the term we are interested in, and to  which we devote 
our attention. The R' term is a deviation from Rotta's model. That is, it can be seen, 
by using (2n)-31dkSij(k) = {uiuj) ,  that R' is linearly proportional to the stresses 
other than (u,~,), and, hence, constitutes a departure from Rotta's model. We will 
carry this term along even though it is found to be very small in 6 7 ( e ) .  

Returning our attention to the first term of (34), we note that it is almost in the 
form suggested by Rotta. There only remains to  evaluate k* in terms of the energy 
dissipation rate e and the turbulence kinetic energy density e,  = #v$ To make 
this evaluation, we have only to note that (k*v,)-l and e/eo both have the same 
dimensions (time) so that (34) can be expressed in the Rotta form 

AZ = - 6C,, (i) {uxu,) +R', (35) 

where C,, is a dimensionless proportionality constant given by 

C,, = 2k*v,(e/e,)-1 (36) 

or, equivalently, with k* given by (34'), 

The numerical value of C,. is calculated in 5 6. Equation (35) determines A:' in terms 
of (u,u,). However, for a comparison with Rotta's model we need the symmetrized 
quantity A S  + At;. The transpose correlation A 2  is readily obtained by taking the 
transpose of our previous equations. It is thereby found that A& = AZ to first order 
in the anisotropy. Hence, we finally have, from (35), the desired expression for the 
(nonlinear part of the) pressure-strain rate in the Rotta form: 

(38) 
e 

A,",+A:" = -C,,-(U,U,)+~R', 

I 3  F L M  105 
e ,  
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The first term on the right agrees with Kotta's model. The term 2R' constitutes a 
small deviation. 

Thus, statistical turbulence theory has been used to  derive Rotta's model to first 
order in the anisotropy for an off-diagonal element of p ~ l ( p [ V u  + ( V U ) ~ ] ) .  This 
verification is only partial because Rotta's model requires that equations analogous 
to  (38) be valid for all the elements of the pressure-strain tensor, and that the pro- 
portionality constant be the same for each element (e.g. C,, = C,, = C,,). 

An important distinction between (38) and Rotta's model has to do with the 
dimensionless constant C,,: in the latter, C,, is an undetermined constant that  must 
be estimated empirically. I n  (38),  on the other hand, Cx, is explicitly defined by (37) 
in terms of the (shear stress) spectrum, and can be calculated in principle (see 36). 
This might have practical importance because it is very difficult to obtain a direct 
experimental measurement of A% or, consequently, of C,.. To our knowledge, such 
measurements have not been made away from a boundary. Neither have the diagonal 
elements (e.g. A:,) been measured. Note that Cx, is actually the ratio of two charac- 
teristic decay times, a velocity correlation time and the viscous dissipation rate. Both 
times are increasing functions of the total turbulence energy, which tends to cancel 
out, and, consequently, C,, may not be too sensitive to the energy-containing part of 
the spectrum. This is borne out in (44). 

6. Theoretical calculation of C,, 
I n  this section, C,, is calculated by performing the k, and k, integrations in (37). 

These integrations require that some assumptions or models be used for the spectrum 
Sz,. The sensitivity of C,, to  the models will be examined afterwards. 

In  spherical co-ordinates, the integrations over the directions of k, and k, in (37) 
can be performed by making straightforward approximations. These integrations are 
given in appendix B, where i t  is shown that (37) reduces to 

Here, the scalar spectrum E,,(k,) is the integral of X,,(k,) over a spherical shell of 
radius k,; that is, 

E,(k,) = A3rn ( 2 4  0 d $ , S n  0 do, sinO,X,,(k,), (40) 

where 8, is the angle that k, makes with the x axis ( k l x  = k,cos8,) and q51 is the 
(azimuthal) angle of k, in the plane perpendicular to  the x axis. 

This scalar spectrum satisfies 

where - (u,u,) is the 22 element of the stress tensor. 
The main approximation was to simplify the integrals of (37) by taking k ,  FZ k ,  for 

some of the factors in y .  This approximation is investigated and justified in $ 7  (6). 
To complete the evaluation of C,,, we have only to carry out integrations in (39). 

This will be done for a class of models of E ( k , )  and E,,(k,), and, afterwards, the 
sensitivity of C,, to these models is examined. 
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Preliminary rough estimate of C,, 
As a preliminary to the model calculation of C,,, it is enlightening to  first quickly 
estimate it and k* from a general consideration. To do so, we make the familiar 
assumption that E ( k )  has a maximum value, or peak, a t  some wavenumber k,, and 

that the main contribution to  the energy integral dk E ( k )  comes from kin the vicinity 

of k,. This vicinity is called the energy-containing region. Similarly, we make the 
additional assumption that the peak of E,,(k) is a t  or near k,. I n  that case the main 
contribution to the integrations in (39) comes from k, M k,, k ,  z lc,, because the 
factor k:k2,(k2, + k i ) - t  varies more slowly than E(k , )  E,,(k,) for most values of k, and 
k,. Hence we set k, x k, z k ,  in that factor to approximate (39) as 

!om 

(preliminary very rough estimate). The estimate of k* is obtained by substituting (41) 
in (36) : 

k* N (&)'k,. 

Equation (41) shows that k* is related to k ,  in a simple way, and is not as obscure as 
it may have seemed at  first glance. 

Precise calculation of C,, for model spectra 
To obtain a more precise evaluation of C,, and k* we must resort to  a model of E ( k )  
and E,,(k).  Afterwards we will examine the sensitivity of k* and C,, to that model. 
A convenient model of E ( k )  was used by Reynolds (1976) to estimate a parameter of 
decaying turbulence, and was previously used by Comte-Bellot & Corrsin (1966). It is 
given by E ( k )  = adk-8 for k > k, and E ( k )  = a d ( k ; $ - m )  km for k Q k,, where 
m > - 1 and a z 1.5 is the Kolgomoroff constant. The spectrum of E,,(k) decreases 
more rapidly than E ( k )  as k increases above k,. For examples, Kaimal et al. (1972) 
find that 8,,(k,), a one-dimensional spectrum closely related to E,,(k),  varies as 
k;; for k, > k,, and Panofsky & Mares (1968) find S,,(k,) cc k;B. We therefore feel 
i t  is reasonable to take E,,(k) cc k-g for k > k,. [The dat)a of Champagne, Harris & 
Corrsin (1970) also show that X,,(k,) decreases faster than k-8 in the inertial sub- 
range.] Hence, our model E,,(k) is taken to be E,,(k) = Bk-% for k > k ,  and 
E,,(k) = B(k$m) kna for k < k,; where B is a normalizing constant determined to be 
B = k t  [$ + (m + l)-l]-l(u,uz) by requiring that E,,(k) satisfy 

13-2 
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Substituting these expressions for E and E,, into (34') and (28') yields k" and W: as 

k* z 0.52 6)' [I  +.1-3(m + l)-']-l k,, 

Note that this k* is quite close to (within 20 yo of) the general approximation (43) for 
a wide range of na (1 < m < 6 ) .  

Finally, C,, is obtained by substituting the model expressions for E and Ex, into 
(39) or, equivalently, by substituting (43a) and (43b) into (36): 

[ l + $ ( m +  I)-lli3 
[ 1 + 1.3(m + I)-']' 

'I C,, = 1.8 

C,, = 1.7 

(form = 0) 

(form = 4))  
(44) 

(a small correction is given in (44')), which is seen to be insensitive to m, the large- 
wavelength behaviour of the spectrum. A small correction discussed next paragraph 
gives C,, = 1-6 to 1.7 [see (44')l. This theoretical value of C,, is fairly close to recent 
empirical determinations of the Rotta constant (e.g. Launder et al. 1975; Reynolds 
1976). It exceeds them by only 20 %. However, it exceeds by afactor of 1.7 the Rotta 
constant C that was determined by Lumley & Newman (1977) from the experimental 
data of Comte-Bellot & Corrsin (1966). That is, their value C = 2 corresponds to 
C,, = 1 when our definition is used for the Rotta constant. That value of C is significant 
because, as was pointed out by Lumley & Newman (1977), it corresponds to no return 
to isotropy for very weakly anisotropic turbulence a t  infinite Reynolds number. It 
is beyond the scope of our paper to discuss the latter phenomenon (i.e. the observa- 
tions of extremely weak return to isotropy of weakly anisotropic turbulence). Instead, 
we will mention several considerations, each of which might account for difference 
between our value of CXzand the Lumley & Newmanvalue of C: The first consideration 
is that there may be no difference because we calculated the oSf-diagonal element of 
the pressure-strain-rate tensor whereas Lumley & Newman determined C from the 
diagonal elements. To our knowledge there is no unquestionable proof that, to lowest 
order in anisotropy, the R,otta constant is exactly the same for all the elements of the 
pressure-strain rate; that remains to be seen. Furthermore, the off-diagonal elements 
of the pressure-strain rate and of the stress tensor were probably zero in the Comte- 
Bellot & Corrsin experiment (they were not measured), and, hence, those elements and 
C,, may have little to do with the observed slow return to  isotropy of the diagonal 
elements. It should also be noted that recent measurements of fully developed turbu- 
lence (Harris et al. 1977) show fairly large differences between the various Cij's. 
However, that turbulence was appreciably anisotropic and the conclusions therefrom 
are not applicable to weak anisotropy. The second consideration is that the experi- 
mental decay rate was equal to the viscous dissipation rate; a rapid decay which 
violates our stationarity assumption. Neither (23) nor (24) can be a priori used in 
(22) for such a rapid decay, and, correspondingly, the correlation time T~ in (A 11)  and 
(27) could be significantly altered, and so could the value of Cz,. We wish to add that 
we know of no theory that is a priori quantitatively correct for such a rapid decay. 
A third consideration is the error caused by the cumulant neglect. This error is 
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thought t'o he small, but we really do not know its magnitude. Any of these considera- 
tions provides a potential explanation of the difference between our value of C,, and 
the value of C determined by Lumley & Newman (1977). I n  fact, each of these con- 
siderations point to an area of future investigation: 

( 1 )  the ratios of C,,, C,,, C,, and C,, to  each other; 
(2) the influence of rapid time decay on C,,; and 
(3) the error caused by the cumulant neglect in appendix A. 
I n  view of the number of approximations that have been made about the spectra, 

it seems surprising at first glance that our theoretical value of C,, is as close as it is to  
several previous determinations. We believe that this agreement is not entirely 
fortuitous. To explain why we believe so, we next examine these approximations for 
the errors they introduce. 

7. Errors of theoretical C,, caused by approximations 
In  this section we wish to examine the approximations or assumptions in our 

calculation of C,.. These are: ( a )  the model long-wavelength behaviour of E(k,)  and 
E,(k,); ( b )  the assumption that the maximum of Ex, occurs near the same wave- 
number as the maximum of E ;  ( c )  the assumed powers laws E,,(k) cc k-5 and 
E(k)  cc k-8 a t  large k; ( d )  approximations used in appendix B related to assumption 
( b ) ;  ( e )  the neglect of the remainder term R'; and (f) the cumulant neglect (appendix 
A) used to  obtain (A 4). 

Assumpt ion  (a ) .  It is seen in (44) that C,, is, fortunately, quite insensitive to the 
behaviour of IZ and Ex,  a t  large wavelength. I n  fact, (44) shows that C,, will only vary 
by 5% as m varies from 0 to CO. This insensitivity is due to a cancellation between 
the m dependencies of k* and v,,. 

Assumpt ion  (b ) .  To discuss this assumption, let k ,  denote the wavenumber where 
E ( k )  has its maximum, and let ki denote where E,(k) has its maximum. It is shown 
in appendix C, for simplified models of E(k)  and E,,(k), that, if k i / k ,  = 0.5, 0.7,  0-8 
and 2.0, then C,, would be reduced by 25,  3, 0, and 25 yo respectively. The maximum 
value of C,, occurs near k i / k L  = 0.9. From the data of Champagne et al. (1970) and 
Kaimal et al .  (1972), it is argued in appendix C that  k>, M @7k,. I n  that case, C,, 
would be reduced by only 3%. However, it is cautioned that this reduction was 
based on several assumptions that were used to  estimate three-dimensional scalar 
spectra from measurements of one-dimensional spectra. A more precise determination 
of kL/kL must await future experiments. Nevertheless, it does suggest that  C,, could 
be reduced a little from the value in (44) to 

'I C,, = 1.7 (form = 0), 

= 1.6  (form = 4).) 
(44') 

Assumpt ion  (c ) .  The assumed power laws E ( k )  cc k-4- and E,,(k) a k f  at  large k 
( k  > kL)  are more reliable than the other assumptions. (We ignore the dissipation 
range for large Reynolds numbers.) Although these power laws are well founded, we 
have calculated how deviations in them would alter CTz. These calculations show that 
C,, changes by less than 5 % as the power law of E,. is varied from k-5 to k-2 or k-3 
at large k.  On the other hand, it is found that Cxz is very sensitive to  the behaviour 
of E ( k )  at large k .  This is because C,, explicitly depends on e,/e [see (36)], and the 
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latter strongly depends on the behaviour of E ( k )  at  large k .  Thus, the numerical 
value of e(eov0kL)-l  given by (43b) is correct if E ( k )  K k-3 for k > k,. Otherwise, it 
and C,, could be very different. Our basic assumption for evaluating Cz, is that the 
-$  power law of E ( k )  is valid a t  large Reynolds number. At low or even moderate 
Reynolds number C,, will differ significantly from (44'). I n  fact, i t  is not difficult to  
show that (voe ,k , ) /e  and, consequently, C,, decrease by 25 yo when the Reynolds 
number decreases to 30 from much larger values - with E ( k )  cc k - c .  At constant 
Reynolds number i t  is not hard to show, for a power-law- spectrum E ( k )  cc kS, that 
the value of (v ,e ,k , ) /e  increases as the power s decreases. Hence, C,, will likewise 
increase as s decreases. [It is interesting to note, from (34),  that  AZ is not very sensi- 
tive to  the form of E ( k ) ,  although C,, is. For this reason, it may sometimes be more 
advantageous to use (34) than (35).] 

Assumption ( d ) .  Approximations in appendix B that pertain to  the spectra include 
those in (B 5 )  and the assumption that 2kf(k: + k$)- l  can be taken equal to 1 in (B 17): 
this assumption is examined and accounted for in appendix C and in assumption ( b )  
where we discussed cases of k i  =t= k,. The assumption in (B 5) is also justifiable by the 
considerations in appendix C where it is found that ki E 0.7kL, which implies that 
k ,  = 0.7k2 in (B 5 ) .  Hence 2k, k , / (k :+  k:) z 0.93. I n  addition cos 8 is usually small 

(i.e. ~ ~ o ~ d ( c o s 8 ) ~ o s 2 D  = 5. Hence the average error (over 8) in (B 5)  is about 

Assumption ( e ) .  The remainder R' was obtained from the substitution of (31') and 
(32') into (30).  It was defined as the collection of all such terms that contain the 
spectra S,,, Syu, S,,, SxU,  or S,, (and not EZ,). Hence, R' contains k, and k, integrals 
of spectra other than Sxz. These integrals can be evaluated in the same way as the 
right-hand side of (37) was evaluated to obtain Czz. We have evaluated R' this way 
and found it t,o be very small : only a few percent of A:,. That calculation of R' will 
not be given here because, although straightforward, it is lengthy, and we do not 
want to enlarge this paper unnecessarily. The purpose of adding A = 0 to (31') and 
(32') can now be explained. The presence of A adds S,, and S,, in such a way as to 
cause R' to be only a few per cent of A:,. Without A added, R' would be about 20 yo 
of A2 and C,, would be 20 % larger than given by (44'). 

Assumption (f). The neglect of the cumulant of the (two-time) fourth-order velocity 
correlation is the most uncertain of the approximations we have made. Such a neglect 
is basic to most statistical turbulence theories (e.g. Kraichnan 1966; Leslie 1970; 
Herring 1974). Here, this neglect is partly mitigated in that it is used in a more 
innocuous way than in the cited turbulence theories. Furthermore, we note that such 
a neglect is justified by Batchelor (1959, ss8.2 and 8.3) for the energy-containing 
scales. Another point we wish to stress is that the present neglect of the two-time 
cumulant is not to be confused with the neglect of a one-time cumulant in quasi- 
normal theory (e.g. Proudman & Reid 1954). The latter has the defect of causing 
negative energy spectra, whereas the former does not. Nevertheless, we have not 
estimated the error in C,, caused by the cumulant neglect - although it may be 
estimated a t  a future time. 

To conclude our discussion of errors, we note that the cumulant neglect is the main 
uncertainty of the derivation. The spectral assumptions (a)-(e),  together, are estima- 
ted to introduce an aggregate uncertainty of about 10 yo - provided that E ( k )  cc k-9 

( 1  - 0.93) x Q z 0.02. 
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(for k > k L )  at  large Reynolds number. However, it is to be understood that the 
spectral error estimates are based on present limited experimental understanding of 
E ( k )  and E,,(k). A more precise understanding of these spectra will allow us to be 
more confident about the range of possible values of Cxz. The main point to be empha- 
sized is that C,, is fairly insensitive to the large-wavelength forms of the spectra E ( k )  
and S,,(k), and, for that  reason, can be estimated from a limited knowledge of these 
forms. A secondary point is that C,, is sensitive to the behaviour of E ( k )  a t  large k .  

8. Summary 
1. ( a )  Statistical turbulence theory is used to prove that, to lowest order in the 

anisotropy, an off-diagonal element of the (nonlinear part of the) pressure-strain-rate 
correlation is proportional to the corresponding element of the stress tensor : 
Ag, + A;, = - Cxz(E/eO) (uxu , ) .  Higher-order terms in the anisotropy are formally 
given but not evaluated in this derivation. 

( b )  It is pointed out that Agz is also linearly proportional to other elements of 
the stress tensor, such as (u,uz) from the X,, spectrum term in (30), but that the coeffi- 
cients of these elements are small enough to be neglected. These are contained in R‘. 

2. An expression for the proportionality constant (Rotta constant) C,, is derived 
in terms of stress spectra. Hence, the value of Cxz can be calculated theoretically from 
a knowledge of the spectra. This may have practical value because i t  is difficult to 
empirically determine C,, in an unambiguous way, or to  measure C,, (or AFz) directly. 

3. ( a )  The numerical value of C,, is estimated by using theoretical approximations 
and experimental measurements of stress spectra. This theoretical value of C,, is 
about 1.6 or 1.7 depending on the long-wavelength behaviour of the spectra. 

( b )  A principal conclusion of this paper is that C,, is very insensitive to the large- 
wavelength behaviour of the stress spectra. This insensitivity is attributed to the 
fact that C,, is actually the ratio of two different time scales [see (36)l both of which 
depend on the long-wavelength (energy-containing wavelength) behaviour of the 
spectrum. That behaviour thus tends to cancel out of C,,. As a consequence of this 
cancellation it has been possible to estimate the uncertainty introduced by those 
approximations that pertain to the spectra. This estimate is about 10 yo. 

(c) The main uncertainty of the derivation is the neglect of the (two-time) 
fourth-order velocity cumulant in appendix A. 
4. The derivation supports part of Rotta’s hypothesis. The verification can only 

be partial because (38) only applies to one element of the pressure-strain-rate tensor 
p;l(pVuT), whereas a basic aspect of Rotta’s hypothesis is that analogous equations 
hold for all the elements with C,, = C,, = C,. However, the other elements can be 
readily calculated by the same method. 

5. The Rotta constant C,, is quite sensitive to  the behaviour of E ( k )  a t  large k .  
This is because C,, is proportional to k ,v i / s ,  and the latter is easily shown to strongly 
depend on the large E behaviour of E ( k ) .  However, the pressure-strain term Ag is 
not so sensitive to E ( k ) ,  because it is proportional to d,, and, hence, the c dependence 
cancels out. I n  $6, it is assumed that E ( k )  cc lc-8 (at large k )  when the Reynolds 
number is large, so that k L v i / c  is given by (44b) .  The value of C,, is expected to 
significantly decrease when the Reynolds number decreases t o  below about 30 because, 
then, kL vi/e decreases. 
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Appendix A 
I n  this appendix we calculate the fourth-order velocity correlation Fk and the 

pressure-strain term A%. This calculation is divided into two parts. In  part 1 ,  Fk and 
are derived in terms of two-time velocity covariances (uz(tl) U k ( t ) )  = S(k; t ,  t,) V .  

I n  part 2, (u~(tl)uk(t)) is expressed in terms of the single-time covariance 
(uzft) Uk(t ) )  = S(k) V ,  and the t ,  integration of is performed. 

Part 1 

Substituting (8) and (19) into the definition of Fk given by (25), we have 

where 

To close the fourth-order correlation in (A 1) we first expand it in cumulants as 

<Uzl(tl) u&(tl) [Uk3(t) Uk4(t)l’)  = (Uzl(tl) Uk3(t)) <Uzl(tl) U&(t)) 

+ (U$l(tl) Uk4(t)) (Uk*, ( t~)  Uk3(t))f &‘4)(t, (A 2, 

where Q(4) is the (fourth-order) cumulant of the correlation on the left-hand side of 
(A 2). [Note that the term (uZl(tl) u&(tl)) (Uk3(t )  u k 4 ( t ) )  is not included in the right- 
hand side because only the fluctuating part of t$,(t)Uk,(t) occurs in (A 2). That is 
(A 2) contains 

(Uk3(t) Uk4(t))’ Uk3(t) Uk4(t) - (uk3(t) Uk4(t))* 

The cumulant &(4) is a two-time fourth cumulant and is very small for large (t  - t,). 
Our basic approximation is to neglect Q(4). The neglect of this two-time cumulant is 
different from, and not as serious as, the neglect of single-time fourth-order cumulants 
in quasi-normal theory. A similar neglect of two-time cumulants is basic to the 
direct interaction approximation (Kraichnan 1959; Weinstock 1977, see the discussion 
in SIVA).  

Before substituting (A 2) in (A i), we express the covariances in (A 2) as 

(uzi(t) Uk3(tl))  = S(kl; t ,  tl) (2.rr)3 S(kl - k3),\  

S(kl; t ,  t l )  (Uk*l(tl) Uk,(t)) v-’, J (A 3) 

where 6 is the Dirac delta function, and S(kl; t ,  t,) has been normalized with V so as 
to  satisfy 

Jg3 S(kl; t> tl) = (u(r, t ,  u(T,  t l ) )*  

Equation (A 3) is valid for homogeneous turbulence, and approximately so for our 
case of slow variations of average quantities on scales 2nk-I d Lo. Substituting (A 3) 
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and (A 2) in (A l ) ,  neglecting Q4(t - t l ) ,  and using k,  = k -  k,, k ,  = k -  k,, we obtain 

which expresses Fk in terms of two-time velocity covariances S ( k ;  t ,  t l ) .  The symbol 2 
denotes the unit vector along z. Substituting (A 4) in the nonIinear part of the 
pressure-strain term, A&.;, given by (26), we have 

k, ka k2 
k2 ' 

b(k) k,k2 - - 

Part 2 

The purpose of this part of appendix A is to express the two-time covariances in 
terms of (familiar) single-time covariances. This is not too difficult because, in (A 5 ) )  
we only need to know S ( k ;  t ,  t,) for values o f t  - t ,  less than the correlation time 7*. Here, 
we define 7E to be the 'e-folding ' time of S ( k ;  t ,  t,) as follows: 

S ( k ;  t ,  t -7E) = e- lS(k;  t ,  t )  = e-'S(k). (A 6) 

As t - t ,  increases beyond 7E the magnitude of S ( k ;  t ,  tl) decreases towards zero and, 
so, does not contribute much to (A 5).  Furthermore, much is known about the time 
dependence of S ( k ;  t ,  t,) because it is basic to the direct interaction approximation 
(Kraichnan 1959) and has been widely studied for more than a decade. Several 
calculations of homogeneous isotropic turbulence (eg.  Kraichnan 1959, 1966; Riley & 
Patterson 1974; Weinstock 1976) show that S ( k ;  t ,  t,) is well approximated for 
t -t ,  5 7E, and U = 0,  by 

S ( k ;  t ,  t,) = S ( k )  exp [ - +$c2wi(t - t1 )2] ,  t - t ,  < 7E, (A 7)  

(A 8 )  S ( k )  = S(k; t ,  t ) ,  
where vt = Q(u .u). It is seen that S ( k )  is just the ordinary (single-time) spectrum of 
the velocity field a t  time t .  It is related to the Reynolds stress by 

It can be shown that for anisotropic turbulence (A 7 )  should be 

S ( k ;  t ,  t,) = S ( k )  exp [ - gkk: (uu) ( t  - t J 2 ]  

(see equation (53) of Weinstock 1976). For the present case where U + 0, this equa- 
tion is easily generalized to  

(t  - t ,  < 7E), (A 10) 

assuming small variation of U on the scale Lo. The magnitude of S ( k ;  t ,  t,) mono- 
tonically decreases with increasing t - t,, although the rate of decrease is slower than 

S ( k ;  t ,  t,) = S ( k )  exp [ - i kk :  (uu) ( t  - t,), - ik .  U ( t  - t,)] 
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that  of (A 10) when t - t, > 7E (e.g. Kraichnan 1959, 1966). However, when t - t ,  > TE, 
the magnitude of S ( k ;  t ,  t,) is so small that (A 10) can be used in (A 5 )  for all t - t ,  with 
little error. 

We wish to use (A lo), in (A 5 ) ,  even though it has only been tested for homo- 
geneous turbulence. This use can be justified as consistent with our assumption of 
weak inhomogeneity. We therefore substitute (A 10) into (A 5). We also substitute 
(20b) into (A 5)  to  obtain 

x 1: dt, exp [ - i (k?  + ki) : (uu) ( t  - t1)2], 

which becomes for large t ,  t 9 [(ki + kg): (uu)]-l, 

7, 3 (n/2)* [(k2,+ kg): (uu)]-$. 

Note that the U term in G&(t - t,) has cancelled out the i k .  U term in (A 10) so that 
A g ( t )  does not depend on U in an explicit way. Equation (A 11)  is the desired ex- 
pression for A g  in terms of single-time velocity covariances S. 

Appendix B 
To perform the spherical integrations in (37),  it is convenient to divide it into four 

parts by dividing y into four parts. To obtain the desired division we use 
kxk2, = kix+ k,xk2x and k,,+ k ,  = k,. We are thus able to write (33) for y as 

yl+Y2+?3+y4, 

- (k,. 
(k;+ k;)*k2 ’ Y1= 

where to separate y3 from the other parts of y we used 

[k2 , - (k l .kJ2]  k~[l-(r<,.fr2)2] = k;[(1+rCl.rC2)2-2(&1.fr2) (1 +fr,.L2)]. 
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The purpose of the division of y in (B 1) is to cause an approximate cancellation 
of k,k, from the factors k; - (k, k,), and k2 = k:+ki+2k1k, in y,, y,, and y3. 
These cancellations are described by (B 5) and (B 13). 
Substitution of (B 1) in (37) thus yields the four parts of Cxz: 

C(1) + C(2) + (33) + C(4), (B 2) c,, 

We calculate C(l) first because it is simplest, and, we find, largest. It is given by 
(B 2) and (B I)  as 

Let f? denote the angle that k, makes with k,: 

k, . k, = k, k, cos 0. 

The main dependence of the integrand of (B 3) on f? is given, with k2 = Ik, + k2I2, by 

w; - (k,. 0 1  - kq( 1 - cos2 8) - 
k2,+ ki+ 2k,. k, ki + kg + 2k,k, cos 8’ 

The chief assumption we shall make to evaluate as well as the other Cci), is that 
the main contribution to  the (scalar) k, and k, integrations in (B 3 )  come from k,  zz k,. 
This assumption leads to  an error of about 2 yo (see 5 7 d )  and greatly simplifies the 
integrations in (B 2).  The basis of this assumption is that the main contribution 
comes from the energy-containing region in the vicinity of which E(k, )  and S,,(k,) 
have their maximum values. It is then assumed that S,,(k,) attains its maximum at  
approximately the same wavenumber as does E(k, ) .  This assumption is tested and 
justified in appendix C with the experimental data of Champagne et al. (1970) and 
Kaimal et al. (1972). Hence (B 4) can be approximated by 

P; - 0%. f,)zl k;( 1 - cos28) 
k t +  k2,+ 2k,. k, (k; + k:) (1  + cos 8) 

When (B 5 )  is substituted into the integrand of (B 3), the cos8 vanishes compared 
with unity because the remainder of the integrand is independent of 8; that is, 
we have J”dk,J”dk, cosf? z 0 when the cos8 part of (B 5) is substituted in (B 3). 
Substitution of (B 5 )  in (B 3) thereby yields 

We next express the k, and k, integrals in spherical co-ordinates, e.g. 
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where 8, is the angle k,  makes with the 2 axis (kzx  = k,  cos O,), and 4, is the (azimuthal) 
angle of k,  in the plane perpendicular to x. We then perform the 0, and 4, integra- 
tions in (B 6) as follows: 

We also integrate Sx,(kl) over a spherical shell of radius k ,  to obtain a scalar spectrum, 
which we denote by Ezz(k l ) :  

where 8, is the angle k,  makes with the x axis and g51 is the azimuthal angle of k,. 
Substitution of ( B  7) and (B 8) in (B 6) finally gives the scalar integral: 

Next, we evaluate C@). The expression for 0 2 )  is given by substitution of y, in 

This integrates very easily if we use approximation (B 5) as justified in appendix C 
and $ 7  ( b ) .  The factor in (B 10) then becomes 

where we have used the cancellation [l - (k, . k,)']/( 1 + k, . k,) = 1 - kl. k,. We 
substitute (B 1 1 )  in ( B  10) and note that all terms odd in k2x, k,,'or k2* vanish because 
E(k,)  is an even function of these components. Hence, (B 12) reduces to 

The right-hand side of (B 12) vanishes because E(k,) is a scalar isotropic function of 
k ,  so that the integrals over k;, and k;, cancel each other out. 

The expression for 03) is given by substituting y3, from (B l ) ,  into ( B  2). The 
expression for y3  is greatly simplified by using 

where we have again used the approximation k ,  M k,, justified in appendix C. Sub- 
stitution of y3 and (B 13) in (B  2 )  yields as 
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Those terms in (B 14) which are odd in k2x,  k,, or k,, vanish, so that (using 
k, = k,, + kZx, kB = k,, + kZ2)  (B 14) reduces to 

The k, and k, integrals are next expressed in spherical co-ordinates as was done 
for C(l). The 8, and &, integrations in (B 15) are given by 

and the 9, and 8, integrations are the same as (B 8). Substitution of (B 8) and (B 16) 
in (B 15) gives 03) as 

This expression is similar in form to that given by (B 9) for C(1). The integrand of 
(B 17) contains the additional factor ki(k2, + @)-I. However, as pointed out for (B 3), 
the main contribution to the integrations in (B 17)  come from k, % k,, assuming 
that E,,(k) has its maximum value near the value of k for which E ( k )  has its maximum. 
(This assumption is tested and justified in 5 7 ( b )  and appendix C.)  I n  that case we 
could take 2kq(k?+kj)- l  E 1 in (B 17)  and, using (B 9), we obtain 

(33) % - gp. (B 18) 

We finally come to the evaluation of 04), given by substitution of y4 in (B 2).  It is 
seen that C(4) is more complex than C(l), G2) or C(3 because it contains several terms 
in the integrand. However, there is a great simplification when approximation (B 5 )  
is used to reduce y4. Furthermore, U4) is also much smaller than 0 1 ) .  We will not 
present the calculation of U4) here because it is lengthy and U4) is small. We will only 
quote the result as follows: 

C(4) -QC(l). (B 19) 

Among the approximations used to obtain (B 19) are the substitution of (B 5) in 
factors of y4 as 

4kt(1+k1.k2)  -_ k, % 1-- 4k2 k, 
kt+k$+2kl.k2 k, k ; + k $  k,' 

and the expansion of k-, as 

1 - (L, . L,) + (L, . L,)2 
k-2 E (kq + k2,)-1(1+ L, . L2)-1 % 

kf + k2, 
The terms higher than second order in (k,. &,) are found to give an extremely small 
contribution to U4). 
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Finally, C,, is obtained by substituting (B 9) ,  (B 12), (B 18), and (B 19) in (B 2) 

As to the accuracy of (B 20), we recall that  i t  is based on the approximations (B 5 )  
and use of 2k:(k; + z I. These approximations are discussed in $ 7  ( b ) .  

Appendix C 
C1. Theoretical variation of C,, with kL/kL 

To determine what happens to  C,, when the maximum of E,,(k) occurs a t  a wave- 
number different from that of the maximum of E ( k ) ,  we will use a very simple delta 
function model of E and E,,: 

which satisfies (28') and (40'). This model isolates, and, perhaps, exaggerates how 
rapidly C,, varies with kilk,. To determine this variation we substitute (B 9),  (B 12), 
(B 17), and (B 19) into (B 2) to obtain C,, in the form 

This expression is more rigorous than (39) for cases in which k , / k i  + 1 because 
(B 17) is used instead of the more approximate (B 18). 

Equation (C 2) reduces to (39) when the square-bracketed term is approximated 
with k ,  z k,. The variation of C,, with kilk, can now be estimated by substituting 
(C 1) in (C 3) to obtain 

y Ez (k;;/k,)2. 

For lci/7cL = 1, C,, is given by 

16 n + v e k  
C,, = - 9 2  (-) (y) (0 .55 )  x 2-g (kL = k L ) .  

When (kLlk,) = 0.5, 0.7, 0.8, and 2-0, then it is found that C,, is less than (C 5) by 
25, 3, 0, and 25 yo, respectively. 

C2. Experimental estimate of kilk, 
Two experiments we refer to  are by Champagne et al. (1970) and that analysed by 
Kaimal et aE. (1972). However, both experiments provide measurements of the one- 
dimensional spectra Xii(k,) and S,,(k,) and not of the three-dimensional scalar 
spectra E ( k )  and E,(k) needed by us. We must therefore rely on crude approxima- 
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tions. For example, the spectrum E ( k )  will be approximated by using the isotropic 
relation (e.g. Tennekes & Lumley 1972) 

Champagne et al. (1970) used an isotropic relation for S,, in terms of S,, and found 
errors (factors of 2) only a t  small k. The isotropic relation (C 6) is not expected to be 
too bad because the shapes of the experimental Sxx(kx) ,  Szz(kx), and X,,(k,) spectra 
are very similar to each other. Furthermore, the errors introduced by (C 6) will be 
partly cancelled out by the fact that  we only use the ratio of kl, to k,, not their 
individual values. The ratio of Ex, to E can be written as 

where D, is a (normalization) constant, and the exponent n(k)  varies with k. Only 
the value of n ( k )  in the vicinity of k = k,, the peak of E ( k ) ,  is needed. To estimate 
n(k,) we use figure 22 of Champagne et al., which gives the spectral ratio 
S,,(k,) [S,,(k,) S,(k,)]-* as a function of Ic,. This ratio can be represented by 

where D,, a constant, and m(k) are determined by the data. To estimate n(k) we 
assume 

n ( k )  z m(k).  (C 9) 

From figure 22 of Champagne et ul., it is seen that m(k)  z 0.3 for k in the vicinity of 
k, where E(k)  is maximum; this maximum is estimated to occur at the abscissa 
nk, = 10-2(by using dE(k) /dk  = 0 and (C 6) with figure 19 of Champagne et al.). 
Thus, with (C 9), we approximate n ( k )  z 0.3 for k z k,. The maximum of E,,(k) is 
determined from (C 7)  by setting dE,,(k) = 0 and using n ( k )  z n(k,) z 0.3. The 
resulting value of kl, is given by 

k; z 0.7kL (C 10) 

(Champagne et al.) The most serious source of error in this calculation is that the 
experimental data is differentiated three times in d E ( k ) / d k .  

The experimental data of Kaimal et al. (1972) can also be used to estimate kl , /kL.  
This estimate is made from their empirical formulas of X,, X,,, S,  for neutral lapse 
rates given in their $ 7 .  From the formula for Sxx(kx) we use (C 6) to estimate that the 
maximum of E ( k )  occurs a t  f = 0.028 (f is the frequency used in the formulas), and 
from the formulas for S,,, S,,, and S,, we estimate n(k,) = 0.25. With this value of 
n(k,) we use (C 7 )  and dE,,/dk = 0 to determine ki as 

in agreement with the estimate for the data of Champagne et al. We should note that 
the data of Kaimal et al. are more anisotropic than that of Champagne et al. because 
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the maxima of Szz(kx) and S,,(k,) occur a t  markedly different wavenumbers. For that 
reason, our application of (C 6) to  the data of Kaimal et al. is more questionable. 

Appendix D. Low Reynolds number 
Equation (27)  for the nonlinear part, A&, of the pressure-strain rate was derived 

for large Reynolds number. This restriction is caused by the neglect of the molecular 
viscosity term vV2uz in (17) .  It is not difficult to correct (27)  so as to apply to arbitrary 
Reynolds number. To do so, we first rewrite (12) ,  or (2), with the viscosity term on 
the left side: 

(D 1) 

P ( t )  E - [u(t) . Vu(t)]’ - u . vu - -. 
P o  

The formal solution of (D 1) is 

u(t )  = drl@(r, t ;  T,, O)u(r,, 0) + drlGY(r, t ;  rl,tl) P(r1, tl), (D 2) s 
where Gy is an operator defined, in analogy with (14), by 

(i + U .  V - vV2 GY(r, t ;  rl, t l )  = 0, 1 
GP(r, t,; r,, t,) = 6(r - r,).) 

The equations following (16) can now be corrected to  include the vV2u dissipat,ion 
term by replacing Go with 8. Actually, what is needed is a Fourier component Gk 
(defined by) 

G;I = d(r - r,) GY(r, t ;  rl, t,) exp [ - ik. (r - rJ]. (D 4) s 
If U is slowly varying in time, then 

Gy = exp [ - (t - t,) (U.  V - vV2)] 6(r - r,), 

G i  z exp [ - (t - tl) (ik . U -t vk2)]. 

(D 5) 

(D 6) 

and, if U varies slowly in space on the scale k-l ,  then (D 4) becomes 

It can be seen that the expressions following (16) can be corrected by everywhere 
replacing Gok with Gi. In  addition, (A 10) for S(k; t ,  t l )  must also be corrected for the 
viscosity term. This correction can be shown to be obtained by adding - vk2(t - t , )  
to (A 10) as follows: 

S(k; t ,  t l )  = S(k) exp [ - ik2: (uu) (t - tl)2 - ik. Uo(t - tl) - v@(t - t,)]. (D 7) 

Returning our attention to  (27), we find that Agz contains GOk and S(k; t ,  t,)/S(k) 
only in the characteristic time 7,., which was given [see (A 1 1)] by 

7,. = 1; dt,exp [ - Q(k2,+ ki): (uu) (t-tl)2], t co. 

7; = 1; dt, exp [ - +(k: + k;) : (uu) (t - tJ2  - 2vk2(t - t,)]. 

(D 8) 

When Gok is replaced by G i ,  and S(k; t ,  tl) is replaced by (D 7) ,  then it can be shown 
that 7, in (A 11)  becomes 7;, given by 

(D 9) 
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is generalized to  apply to all Reynolds number by replacing r,  Hence, (27) for 
with r: :  

k2 
k 

: S(k,) S(kl):T. 

We thus see that the effect of including molecular viscosity is expliktly accounted 
for by adding - 2vk2 in the expression for the characteristic time 7,. I n  general, we 
believe that the Lagrangian integral time scales must likewise be corrected with 
- 2vk2 when the Reynolds number is low. 
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